Phase-dependent modulation of percutaneously elicited multisegmental muscle responses after spinal cord injury.
نویسندگان
چکیده
Phase-dependent modulation of monosynaptic reflexes has been reported for several muscles of the lower limb of uninjured rats and humans. To assess whether this step-phase-dependent modulation can be mediated at the level of the human spinal cord, we compared the modulation of responses evoked simultaneously in multiple motor pools in clinically complete spinal cord injury (SCI) compared with noninjured (NI) individuals. We induced multisegmental responses of the soleus, medial gastrocnemius, tibialis anterior, medial hamstring, and vastus lateralis muscles in response to percutaneous spinal cord stimulation over the Th11-Th12 vertebrae during standing and stepping on a treadmill. Individuals with SCI stepped on a treadmill with partial body-weight support and manual assistance of leg movements. The NI group demonstrated phase-dependent modulation of evoked potentials in all recorded muscles with the modulation of the response amplitude corresponding with changes in EMG amplitude in the same muscle. The SCI group demonstrated more variation in the pattern of modulation across the step cycle and same individuals in the SCI group could display responses with a magnitude as great as that of modulation observed in the NI group. The relationship between modulation and EMG activity during the step cycle varied from noncorrelated to highly correlated patterns. These findings demonstrate that the human lumbosacral spinal cord can phase-dependently modulate motor neuron excitability in the absence of functional supraspinal influence, although with much less consistency than that in NI individuals.
منابع مشابه
Phase dependent modulation of percutaneously elicited multisegmental muscle 1 responses after spinal cord injury 2 3
Phase dependent modulation of percutaneously elicited multisegmental muscle 1 responses after spinal cord injury 2 3 Christine J Dy, Yury P. Gerasimenko, V. Reggie Edgerton, Poul Dyhre-Poulsen , 4 Grégoire Courtine, and Susan J. Harkema 5 6 1. Department of Physiological Science, 2. Neurobiology, and 3. the Brain Research Institute, 7 University of California, Los Angeles, Los Angeles, CA. 4. P...
متن کاملLocomotor training alters the behavior of flexor reflexes during walking in human spinal cord injury.
In humans, a chronic spinal cord injury (SCI) impairs the excitability of pathways mediating early flexor reflexes and increases the excitability of late, long-lasting flexor reflexes. We hypothesized that in individuals with SCI, locomotor training will alter the behavior of these spinally mediated reflexes. Nine individuals who had either chronic clinically motor complete or incomplete SCI re...
متن کاملPeriodic modulation of repetitively elicited monosynaptic reflexes of the human lumbosacral spinal cord.
In individuals with motor-complete spinal cord injury, epidural stimulation of the lumbosacral spinal cord at 2 Hz evokes unmodulated reflexes in the lower limbs, while stimulation at 22-60 Hz can generate rhythmic burstlike activity. Here we elaborated on an output pattern emerging at transitional stimulation frequencies with consecutively elicited reflexes alternating between large and small....
متن کاملPlantar cutaneous afferents normalize the reflex modulation patterns during stepping in chronic human spinal cord injury.
Plantar cutaneous afferent transmission is critical for recovery of locomotion in spinalized animals, whereas a phase-dependent reflex modulation is apparent during fictive or real locomotion. In nine people with a chronic spinal cord injury (SCI) the effects of foot sole stimulation on the soleus H-reflex and tibialis anterior (TA) flexion reflex modulation patterns during assisted stepping we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 103 5 شماره
صفحات -
تاریخ انتشار 2010